Добавить новость
Добавить компанию
Добавить мероприятие
Технологии машинного обучения группы компаний «Ростелеком» признаны лучшими в морфологическом анализе текстов
20.06.2017 14:06
версия для печати
При подготовке к конкурсу «умный» классификатор набрал обучающую статистику признаков из текстового корпуса объемом более миллиона слов, а для оценки точности ему было предложен массив документов из 15000 слов. В результате сравнительного тестирования на закрытой дорожке MorphoRuEval метод «Айкумен ИБС» признан победителем по точности нормализации русских слов, достигающей 92,22%. Кроме того, он занял второе место по восстановлению морфологических признаков с достоверностью свыше 93%. По мнению директора Департамента разработки АО «Айкумен ИБС» Андрея Ярового, «независимая экспертиза «Dialogue Evaluation» подтвердила отличное качество морфологического анализа текстов, используемого в компании. Данный анализ является фундаментом всей текстовой аналитики, что позволяет нам с беспрецедентной точностью извлекать смысл из документов на русском языке». «Мы продолжаем двигаться вперед, постоянно совершенствуем алгоритмы и разрабатываем инновационные методы в своей работе, предоставляя возможность нашим заказчикам максимально использовать преимущества IQPLATFORM® – современного отечественного продукта в области Big Data, по ряду функционала не имеющего аналогов на российском и мировом рынках» – подводит итог участия в мероприятии генеральный директор АО «Айкумен ИБС» Ирина Касаткина. Морфологический анализ выполняется на начальных этапах автоматической обработки текста и является одной из наиболее важных операций, влияющих на финальное качество анализа документов. К его задачам относится определение части речи и морфологических признаков (падеж, род, число, время, лицо и пр.) каждого слова предложения, а также нормализация – корректное восстановление начальной формы этих слов. Представленная технология лингвистической обработки позволяет более качественно и с минимальным участием человека анализировать большие объемы текстовой информации на естественных языках. Существующие методологии в этой области сконцентрированы на английском языке. Но они абсолютно несовместимы с русской языковой моделью по причине ее морфологической обогащенности более чем 300 различными комбинациями признаков. Исходя из этих особенностей, лингвистическая группа компании «Айкумен ИБС» разработала свой алгоритм, объединяющий достоинства классических способов с методами машинного обучения в виде двухступенчатой фильтрации словарного разбора:
Роль указанных признаков играют различные комбинации префиксов, суффиксов и отдельных морфологических характеристик слов в пределах контекстного окна размером ±3 слова от анализируемого. Научно-практический форум «Диалог» ежегодно собирает ученых, мировых экспертов и отраслевых вендоров для обсуждения передовых методов компьютерной лингвистики и обмена опытом создания прикладных решений по интеллектуальному анализу текстов на естественных языках. Наибольшим интересом в программе конференции-2017 пользовался конкурс MorphoRuEval, организованный лабораторией «Dialogue Evaluation» для тестирования инструментов морфологического анализа русскоязычных текстов из сети Интернет. В этом году в нем приняли участие 15 команд, представляющих компании ABBYY, OnPositive, Pullenti, Samsung R&D и «Айкумен ИБС», а также университеты МФТИ, НИУ ВШЭ, ИСП РАН, МГУ, МИЭМ и НГУ. Редактор раздела: Тимофей Белосельцев (info@mskit.ru) Рубрики: Интернет, Интеграция, Маркетинг, ПО, Web
наверх
Для того, чтобы вставить ссылку на материал к себе на сайт надо:
|
|||||
А знаете ли Вы что?
ITSZ.RU: последние новости Петербурга и Северо-Запада13.11.2024 Т2 запустил первый тариф после ребрендингаз> 31.10.2024 «Осенний документооборот – 2024»: взгляд в будущее системы электронного документооборотаз>
|
||||