Добавить новость
Добавить компанию
Добавить мероприятие
Тесты цифровой техники
|
|
|
26.04.2018
Организация оперативного и управленческого учета в небольшой компании
17.05.2018
Хакатон по 1C «iS THiS DESiGN»
17.05.2018
Пятая конференция разработчиков российских операционных платформ «OS DAY. Надежность»
18.05.2018
Деловой завтрак для финансовых директоров телекоммуникационной отрасли
24.05.2018
Восьмой форум «Внутренний и внешний электронный документооборот»
Специалисты научили нейросети читать медицинские сканы без участия людей
21.03.2018 15:14
версия для печати
Решение для оценки состояние шейных артерий включает портативный сканер и сервис по подробной расшифровке результатов сканирования опытными техниками. Услуга предоставляется медучреждениям и врачам частной практики США компанией-поставщиком высокотехнологичного медицинского оборудования. Ранее специалисты по расшифровке просматривали всю полученную видеозапись длиной в среднем 5 минут, кадр за кадром проверяя состояние артерии, чтобы выявить репрезентативные для врача снимки и определить на них наличие холестериновых бляшек. Измерение толщины стенки артерии и ее диаметра, определение формы, размеров и расположения бляшек также осуществлялись вручную. Подготовка одного заключения могла занимать несколько часов. Стандартные программные решения не позволяли автоматизировать процесс «чтения» сканов — с расшифровкой мог справиться только квалифицированный специалист с медицинским образованием. С ростом количества пользователей поставщику решения приходилось увеличивать штат высокооплачиваемых техников, росла и цена услуги. При этом скорость и качество сервиса не менялись. Чтобы сделать систему конкурентоспособной, требовалось оптимизировать процессы: ускорить работу текущего штата специалистов и одновременно повысить точность расшифровок. Решить проблему удалось благодаря модулю на базе алгоритмов машинного обучения, разработанному Health Samurai, независимым подразделением компании WaveAccess. Нейросеть помогает определять области нахождения артерий и распознавать холестериновые бляшки. После обучения система научилась отличать обычный «шум» на видеозаписи от аномалии и находить нужные кадры с высоким процентом точности. Модуль делит запись на отдельные кадры и предлагает технику 5 самых качественных снимков с наиболее удачной областью для измерения диаметра стенки артерии. Также система предлагает специалисту 20 снимков артерии, где выделены области, представляющие интерес. С задачей по расшифровке записи для измерения диаметра стенки артерии алгоритмы справляются с точностью около 95%, с задачей по поиску кадров с потенциальными аномалиями — с точностью 80%. Разработка позволила ускорить работу специалистов по расшифровке в 5 раз: теперь не требуется просматривать всю запись целиком — необходимые для заключения кадры предоставляются автоматически. Кроме того, снизилась вероятность ошибки, связанной с человеческим фактором. Как следствие, выросла конкурентоспособность решения для оценки состояния артерий: врачи — пользователи услуги по расшифровке результатов сканирования — получают еще более точный результат за более короткий срок. «Разработка решения потребовала тесного сотрудничества наших алгоритмистов и разработчиков с врачами. На первом этапе внедрения медицинские специалисты сами “дообучали” решение: просматривали кадры вручную, указывали на аномалии, оценивали качество принятого модулем решения и рассказывали, чего им не хватает в данных. Данные готовились вручную, что требовало повышенного внимания специалистов с обеих сторон», — комментирует Александр Азаров, старший вице-президент по разработке ПО в WaveAccess. Компания WaveAccess также создает модули machine learning для изучения аномального поведения пользователей с целью защиты данных, для «умных» рекомендательных систем в online-магазинах, распределения клиентских заявок по рейтингу, прогнозирования затратных событий и других бизнес-задач. Редактор раздела: Александр Авдеенко (info@mskit.ru) Рубрики: ПО
наверх
Для того, чтобы вставить ссылку на материал к себе на сайт надо:
|
|||||